

Available online at http://www.harmanpublications.com

World Journal of Science and Research

Harman Publications. All rights reserved

ISSN: 2455 2208

Research Article Botany

PHYTOCHEMICAL CHARACTERIZATION AND ANTIMICROBIAL ACTIVITY OF Achyranthes aspera L.

R. Rama and V. Latha*

PG and Research Department Of Botany, Kunthavai Naacchiyaar Govt.Arts College For Women (Autonomous) Thanjavur – 613 007, Tamilnadu

ABSTRACT

In the present study was to investigate the phytochemical screening, histochemical, Fluorescence, UV-Visible analysis and antimicrobial activity of *A. aspera* leaves extract. The phytochemical screening *A. aspera* leaves showed that the presence of tannin, saponins, flavonoids, glycosides, terpenoids, steroids, anthroquinones, triterpenoids and carbohydrate, Polyphenol whereas phlopatannins, alkaloids was absent in methanol and aqueous extracts. Protein was present only methanol extract.Quantitative analysis revealed that the plant phenol (166.4mg/gm), flavonoids (70mg/gm), tannin (27.2mg/gm) and terpenoids (20mg/gm) were presented. The histochemical analysis further confirmed in the presence of flavonoids, tannin and saponin. The fluorescence behavior of leaves powder proved by this study. The result of UV-VIS spectroscopic analysis confirms the presence of phenolic compounds in the *A. aspera* leaves extract. The results reveal that extract of *A. aspera* leaves were significantly effective against bacteria species *E. coli* and fungi species *C. albicans*.

Citation: R. Rama and V. Latha. (2018). Phytochemical characterization and antimicrobial activity of *Achyranthes aspera* L., *World Journal of Science and Research*. 3(1): 16-22.

Article Info:

Received on 10^h Feb 2018 Accepted on 18th March 2018 Online March 2018

Keywords:

A. aspera, Fluorescence behavior Phytochemical, antibacterial activity

*Corresponding author Dr. V. Latha.

Assistant Professor PG and Research Department Of Botany, Kunthavai Naacchiyaar Govt.Arts College For Women (Autonomous) Thanjavur – 613 007, Tamilnadu

INTRODUCTION

Natural products have played an important role throughout the world in treating and preventing human diseases. Natural product medicines have come from various source materials including terrestrial plants, terrestrial microorganisms, marine organisms, and terrestrial vertebrates and invertebrates. Medicinal plants are the nature's gift to human being to make disease free healthy life. It plays a vital role to preserve our health. India is one of the most medico-culturally diverse countries in the world where the medicinal plant sector is part of a time-honoured tradition that is respected even today. Hence, the main traditional systems of medicine include Ayurveda, Unani and Siddha (Kotnis et al., 2004). Medicinal plant is an important element of indigenous medical systems in all over the world. The ethno botany provides a rich resource for natural drug research and development. Recent research demonstrates that many phytochemicals can protect humans against diseases. Keeping in view, the present study to investigate the phytochemical analysis of Achyranthes aspera L. leaves.

MATERIALS AND METHODS Collection of plant materials

The leaves of Achyranthes aspera L. were collected in December 2017 from Thanjavur, Tamil Nadu, India. The A. aspera leaves were washed several times with distilled water to remove the traces of impurities from the leaves. Leaves was spread out in a plain paper and shade dried at room temperature for about 10 days and makes a fine powder using grinder mixture. The powder materials were used for further studies.

Preparation of plant extract:

2 gram of the powder of *A. aspera* leaves were transferred in to different conical flask (250ml). The conical flask containing 50ml of different solution (methanol and water). The conical flask containing *A. aspera* leaves were shake it well for 30 minutes by free hand. After 24 hrs, the extracts were filtered using whatman filter paper No.1 and filtrate used for further analysis.

Phytochemical screening

Chemical tests were carried out on the extract using standard procedures to identify the constituents as described by Sofowara, (1993), Trease and Evans, (1989) and Harborne, (1973 and 1984).

Quantitative analysis of phytochemicals

Total phenols estimated by the method of Edeoga *et al.*, (2005). Flavonoid determine by the method of Bohm and Kocipai-Abyazan, (1994). Tannin

determination by method of Van-Burden and Robinson, (1981). Total terpenoid content in the leaf extracts were assessed by standard method (Ferguson, 1956). Qualitative analysis of Vitamins (Pearson, 1976; Patel, 2005). Determination of Fluorescence behavior of plant powder (Rao *et al.*, 2011).

Histochemical tests

A small quantity of dried and finely powdered leaves sample was placed on a grease free microscopic slide and treated with specific chemicals and reagents and waited for 1-2 minutes. A positive test for histochemicals was indicated by the appearance of the appropriate colour change after application of the reagent. Using a light microscope to observe and record any colour changes. The leaf powder treated with diluted ammonia and yellow H_2SO_4 gave colour indicates flavonoids. Plant powder treated with ferric chloride to give Dark blue to black indicates the presence of tannin. Plant powder treated with H₂SO₄ (few drops) to give yellow colour indicates the presence of Saponin.

UV-Visible analysis

The extracts were examined under visible UV-Visible spectrum. The sample is dissolved in same solvent. The extracts were scanned in the wavelength ranging from 340-960 nm using Systronic Spectrophotometer. These solutions were scanned in turn at intervals of 10 nm and the characteristic peaks were detected. The peak value of the UV-Visible was recorded.

Determination of antimicrobial activity

Antibiogram was done by disc diffusion method (NCCLS, 1993; Awoyinka et al., 2007) using plant extracts. Petri plates were prepared by pouring 30 ml of NA /PDA medium for bacteria / fungi. The test organism was inoculated on solidified agar plate with the help of micropipette and spread and allowed to dry for 10 mints. The surfaces of media were inoculated with bacteria/fungi from a broth culture. A sterile cotton swab is dipped into a standardized bacterial/ fungi test suspension and used to evenly inoculate the entire surface of the Nutrient agar / PDA plate. Briefly, inoculums containing bacteria specie were spread on Nutrient agar plates and fungus strains were spread on potato dextrose agar. Using sterile forceps, the sterile filter papers (6 mm diameter) containing the crude extracts (50ul) were laid down on the surface of inoculated agar plate. The plates were incubated at 37°C for 24 h for the bacteria and at room temperature (30±1°C) for 24-48 hrs. for yeasts strains. Each sample was tested in triplicate. The antimicrobial potential of test

compounds was determined on the basis of mean diameter of zone of inhibition around the disc in millimeters. The zones of inhibition of the tested microorganisms by the samples were measured using a millimeter scale.

RESULTS AND DISCUSSION

In the present study was carried out on the *Achyranthes aspera* L. leaves revealed the presence of medicinally active constituents. **Qualitative analysis**

The phytochemical characters of the *A. aspera* leaves investigated and summarized in Table-1 and Plate 2 and 3. The phytochemical screening *A. aspera* leaves showed that the presence of tannin, saponins, flavonoids, glycosides, terpenoids, steroids, anthroquinones, triterpenoids and carbohydrate, polyphenol whereas phlopatannins, alkaloids was absent in methanol and aqueous extracts. Protein was present only methanol extract.

Reena Ganesan et al., (2013) aimed to carry out preliminary phytochemical of six different solvents extracts from leaf and leaf derived callus of Sebastiania chamaelea. The preliminary phytochemical analysis reflects the presence of phenolic compounds, carbohydrate, alkaloids, phytosterols, fats and oils, terpenoids. The result highlights among two extracts, leaf extract show negligible activity than callus extracts

Kumar et al., (2013) investigated the preliminary phytochemical screening of the leaves of the plant Lasia spinosa (Lour) Thwaites. The phytochemical screening showed that the methanol and aqueous extracts contained alkaloid, the carbohydrates and the phenolic compounds were present in all of the solvent extract except petroleum ether extract. The chloroform, ethyl acetate and the aqueous extract contained glycosides whereas the saponins present in methanol and aqueous extract. The ethyl acetate extract contain only the flavonoids.

Quantitative analysis

Quantitative analysis revealed that the *Achyranthes aspera* L. leaves has flavonoids, saponin, tannin and terpenoids. Significant amount of phenol (166.4mg/gm), flavonoids (70mg/gm), tannin (67.2mg/gm) and terpenoids (20mg/gm) were presented in Table 2. The above phytoconstituents were tested as per the standard methods.

The secondary metabolites formed also are an important trait for our food plants (taste, colour, scent, etc.) and ornamental plants. Moreover, numerous plant secondary metabolites such as flavonoids, alkaloids, tannins, saponins, steroids, anthocyanins, terpenoids, rotenoids etc. have found

commercial application as drug, dye, flavour, fragrance, insecticide, etc. Such fine chemicals are extracted and purified from plant materials.

Vitamins Vitamins are organic substances that are essential in tiny amounts for growth and activity of the body. They are obtained naturally from plant and animal foods. Organic in this definition refers to the chemistry and molecules of vitamins. The word organic means that the molecules of the substance contain the element carbon. The term also means that vitamins can be destroyed and become unable to perform their functions in our bodies. Too much heat, certain kinds of light and even oxygen can destroy some vitamins. Vitamins work with other substances in the body like enzymes and minerals. Together they perform such functions as strengthening bones, healing wounds, keeping the skin healthy, building cells, and helping to resist infections. The amounts of vitamins ingested from food are measured in micrograms or milligrams. The vitamins of the Achyranthes aspera L. leaves investigated and summarized in Table-3.

Histochemical analysis of leaves powder of *Achyranthes aspera* L. leaves

Histochemistry is the branch of histology dealing with the identification of chemical components of cells and tissues, it is a powerful tool for localization of trace quantities of substances present in biological tissues. Histochemical techniques have been employed to characterize structure and development, and to study time course of distribution of deposition and phytocompounds (Krishnan et al., 2001). In the present study, Achyranthes aspera L. leaves were treated with specific chemicals and reagents. The A. aspera leaves powder treated with diluted ammonia and H₂SO₄ gave yellow colour indicates flavonoids, treated with FeCl₃ gave green colour indicates tannin and treated with concentrated H₂SO₄ gave yellow colour indicates saponin (Table 4 and Plate 5). This results further confirmed the presence of phytochemicals.

Fluorescence behavior of *Achyranthes* aspera L. leaves powder

Fluorescence analysis of entire leaves of *A. aspera* has been carried out in daylight and under UV light. Fluorescence analysis of leaf powder of *A. aspera* was carried out by the treatment of different chemical reagents such as H₂SO₄, HCl, NH₃, HNO₃, CH₃OH and NaOH. The powders were observed in normal daylight and under short (245 nm) and long UV light (365 nm) and the results were presented in Table 5 and Plate 6.

In the fluorescence analysis, the plant parts or crude drugs may be examined as such or in their powdered form or in solution or as extracts. Although, in most of the cases the actual substances responsible for the fluorescence properties has not been identified, the merits of simplicity and rapidity of the process makes it a valuable analytical tool in the identification of plant samples and crude drugs (Denston, 1946).

Ultraviolet/visible (UV/VIS) spectroscopy

UV-Visible spectrophotometry technique is simple, rapid, moderately specific and applicable to small quantities of compounds. UV-visible spectroscopy can be performed for qualitative analysis and for identification of certain classes of compounds in both pure and biological mixtures. Preferentially, UV-visible spectroscopy can be used for quantitative analysis because aromatic molecules are powerful chromophores in the UV range. Natural compounds can be determined by using UV-visible spectroscopy. Phenolic compounds including anthocyanins, tannins, polymer dyes, and phenols form complexes with iron that have been detected by ultraviolet/visible (UV-Vis) spectroscopy (Kemp, 1991).

The UV-VIS profile (Fig.1) of the *Achyranthes aspera* L. leaves extract was studied at a wavelength range of 340 to 940 nm. Three major bands were recorded at 390, 560 and 640 nm. The result confirms the occurrence of peaks at 340-940 nm reveals that the absorption bands are due to the presence of flavonoids, phenol and its derivatives (Liu *et al.*, 2006). The result of UV-VIS spectroscopic analysis confirms the presence of phenolic compounds in the extract of *A. aspera* leaves.

Antimicrobial activity

Nature has bestowed on us a very rich botanical wealth and a large number of diverse types of plants grow in different parts of the country. Emergence of pathogenic microorganisms that are resistant/multi-resistant to major class of antibiotics has increased in recent years due to indiscriminate use of synthetic antimicrobial drugs. In addition, high cost and adverse side effects are commonly associated with popular synthetic antibiotics, such as hypersensitivity, allergic reactions, and immunosuppressant and are major burning global issues in treating infectious diseases (Karaman *et al.*, 2003).

This situation forced scientists to search for new antimicrobial substances with plant origin. Plant extract of A. aspera leaves was screened against Escherichia coli species of bacteria and Candida albicans species of fungi were evaluated using the standard agar disc diffusion method. The disc diffusion method is used to detect the antimicrobial activity of plant extract. The solidified Nutrient agar plates were swapped with the test organism and the samples were impregnated. After the incubation the zone was measured. The antimicrobial activity of plant extracts was detected by the indication of zone around the disc. The in vitro antimicrobial activity of the A. aspera leaves extract against these bacteria and fungi were qualitatively assessed by the presence of inhibition zones represented in the photographic plate 7. The inhibitory activities in culture media of the microbes reported in Table 6 were comparable with standard antimicrobiotic viz. chloramphenicol and fluconazole

Table.1: Qualitative analysis of Phytochemicals	s in Achyranthes aspera I	∟. leaves
---	---------------------------	-----------

S.No	Test analysis	Methanol extract	Aqueous extract
1	Tannin	++	+
2	Phlobatannin	-	-
3	Saponin	++	++
4	Flavanoids	++	++
5	Steroids	++	++
6	Terpenoids	+	++
7	Triterpnoids	+	+
8	Alkaloid	-	-
9	Carbohydrate	+	+
10	Protein	+	-
11	Anthroquinone	+	++
12	Polyphenol	+	++
13	Glycoside	+	++

(-) Indicates Absence; (+) Indicates Presence; (++) Moderately present

Table.2: Quantitative phytochemical analysis of Achyranthes aspera L. leaves extract

S.No	Secondary Metabolites	Result (mg/gm)
1	Phenol	166.4±6.64
2	Flavonoids	70±4.9
3	Tannin	27.2±4.70
4	Terpenoids	20±1.40

Values are expressed as mean \pm SD for triplicates

Table.3: Qualitative analysis of vitamins in Achyranthes aspera L. leaves

S.no	Vitamins	Observation
1	Vitamin A	-
2	Vitamin C	+
3	Vitamin D	-
4	Vitamin E	+

(+) Presence (-) Absence

Table.4: Histochemical analysis of leaves powder of Achyranthes aspera L. leaves

S.No	Characterisation	Observation	Result
1	Tannin	Green	++
2	Flavonoids	Yellow	++
3	Saponin	Yellow	+
4	Steroids	Green	+
5	Terpenoids	Orange	++
6	Glycoside	Brown	++
7	Polyphenol	Blue green	+

Note: (+) Presence; (++) present with high intensity of the colour

Table.5: Fluorescence behavior of Achyranthes aspera L. leaves powder

S. No	Test	Visible Light	Short UV	Long UV
1	Plant powder	Green	Green	Black
2	Plant powder treated with water	Green	Black	Black
3	Plant powder treated with Hexane	Green	Green	Black
4	Plant powder treated with Chloroform	Green	Green	Black
5	Plant powder treated with Methanol	Green	Green	Black
6	Plant powder treated with Acetone	Green	Green	Black
7	Plant powder treated with 1N NaOH (water)	Yellowish green	Green	Black
8	Plant powder treated with 1N HCl	Brown	Brown	Black
9	Plant powder treated with sulphuric acid with an equal amount of water	Brownish green	Dark green	Black
10	Plant powder treated with Nitric acid dilute with an equal amount of water	Orange	Brown	Black

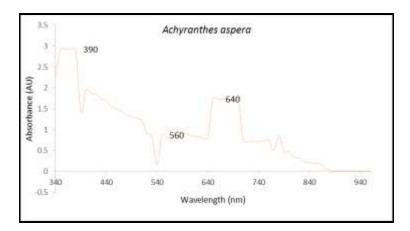
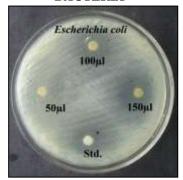


Fig.1: UV-Visible spectrum analysis of Achyranthes aspera L. leaves


Table.6: Antimicrobial activities of Achyranthes aspera L. leaves

Microbial Organism	50µ1	100µl	150µl	Standard
Escherichia coli (mm)	9.75±0.68	11.00±0.77	11.25±0.78	13.00±0.91
Candida albicans (mm)	5.00±0.35	6.00±0.42	7.75±0.54	13.50±0.94

Values were expressed as Mean \pm SD. Bacterial standard – Chloramphenicol

Fungal standard - Fluconazole

BACTERIA

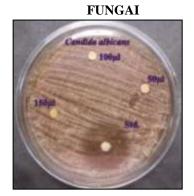


Plate.7: Antimicrobial activities of Achyranthes aspera L. leaves

CONCLUSION

Present investigation reported, Achyranthes aspera L. leaves extract is warehouse of chemodiversity which will be useful in screening for medicines like steroids, alkaloids, phenolics, flavonoids and some other chemicals. The results are encouraging but scientific scrutiny is absolutely necessary before being put in practice. This study is the first scientific report that provides convincing phytochemicals and antimicrobial evidence for the relevance of A. aspera leaves thus providing scientific validity to its traditional consumption by the local population of south India.

REFERENCES

- Awoyinka, O., Balogun, IO., Ogunnowo, AA., (2007).

 Phytochemical screening and *invitro* bioactivity Of Cnidoscolus aconitifolius (Euphorbiaceae). *J Med Plant*, V.1(3): p.63-65.
- Bohm BA and Kocipai-Abyazan R. (1994) Flavonoids and condensed tannins from leaves of *Hawaiian vaccinium* vaticulatum and V. calycinium. *Pacific Sci.* 48: 458-463.
- Denston TC. (1946) "A textbook of Pharmacognosy", Sir Isaac Pitman & Sons, Ltd, London, 46-51.
- Edeoga HO, Okwu DE and Mbaebie BO. (2005) Phytochemical constituents of some Nigerian medicinalplants. African Journal of Biotechnology, 4 (7): 685-688.
- Ferguson NM. A Text Book of Pharmacognosy. New Delhi: Mac Milan Company; 1956. p. 191.
- .Harborne JB (1973). *Phytochemical methods*, London. Chapman and Hall, Ltd. pp. 49-188.
- Karaman L, Sahin F, Gulluce M, Ogutcu H, Sngul M, Adiguzel A. (2003) Antimicrobial activity of aqueous and methanol extracts of Juniperus oxycedrus L. J Ethnopharmacol.; 85: 231-235.
- Kotnis MS, Patel P, Menon SN and Sane RT. (2004) Reneprotective effect of Hemisdesmus indicus, a herbal drug used in gentamicin-

induced renal toxicity. Nephrology (carlton), 3:142-152.

- Kumar M, Mondal P, Borah S and Mahato K. (2013)
 Physico- chemical evaluation, preliminary
 phytochemical investigation, fluorescence
 and TLC analysis of leaves of the plant Lasia
 spinosa (Lour) Thwaites. Int J Pharm Pharm
 Sci, 5 (2):306-310.
- NCCLS-National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disc susceptibility tests. PA: NCCLS Publications; 1993, p. M2-A5.
- Patel DK, Kumar R, Prasad SK and Hemalatha S. (2011) Pedalium murex Linn (Pedaliaceae) fruits: A comparative antioxidant activity of its different fractions. *Asian Pac J Trop Biomed* 1: 395-400.
- Pearson Thomas A .Cardiovascular Disease in Developing Countries: Myths, Realities, and Opportunities. Cardiovascular Drugs and Therapy 1999;13:95–104
- Rao VV, Gurundhra S, Dhar RL, Subramanyam K (2001) Assessment of
- Reena Ganesan, Kamalanathan Desingu, Ragavendran Chinnasamy and Natarajan Devarajan.,(2013). Screening of Antibacterial and Phytochemical analysis of leaf and leaf derived Callus extracts of Sebastiania chamaelea (L.) Muell. Arg. Indo American Journal of Pharmaceutical Research, 2231-6876.
- Sofowara A, 1982. Medicinal plants and traditional medicines in Africa, John Wiley and Sons, New York, pp 256-259.
- Trease GE and Evans WC. (1989) Phenols and Phenolic glycosides. In:Textbook of Pharmacognosy. (12th ed.). Balliese, Tindall and Co Publishers, London pp. 343-383.
- Van-Burden TP and Robinson WC.(1981) Formation of complexes between protein and Tannin acid. *J. Agric. Food Chem*, 1: 77.

Source of support: Nil;

Conflict of interest: None declared